
FAKULTÄT FÜR INFORMATIK

TECHNISCHE UNIVERSITÄT MÜNCHEN

Interdisciplinary Project (IDP) in Informatics

Machine Learning in Finance

Mohammad Zeeshan

FAKULTÄT FÜR INFORMATIK

TECHNISCHE UNIVERSITÄT MÜNCHEN

Interdisciplinary Project (IDP) in Informatics

Machine Learning in Finance

Maschinelles Lernen in der Finanzierung

Author: Mohammad Zeeshan
Supervisor: Patrick Bielstein, Lehrstuhl für Finanzmanagement und Kapitalmärkte, TUM
Advisor: Dr. Gemma Garriga, Frank Rosner, Global Data & Analytics Team, Allianz SE
Submission Date: July 13, 2017

Contents

1 Introduction 2

1.1 Project Goals . 2

1.2 Description of Software Stack . 2

1.2.1 Nomad . 2

1.2.2 Docker: . 3

1.2.3 R . 4

1.2.4 H20 . 5

1.2.5 Description of Algorithm used . 6

1.2.6 Why we chose GBM as algorithm for our experiments? 6

2 Goals Achieved 7

2.1 Milestone 1 - Setting up tools . 7

2.1.1 Setting up H20 . 7

2.1.2 Setting up Nomad . 7

2.2 Milestone 2 - Conducting experiments . 10

2.2.1 Description of Data Set used . 10

2.2.2 Bash Script used for Generating the data set 12

2.2.3 Script 1 for comparison - Running GBM using H2O on RStudio 12

2.2.4 Script 2 for comparison - Running GBM using R only 13

2.3 H2O Multi-Node Experiment: . 15

2.3.1 Cluster Setup for H2O multi-node experiment 15

2.3.2 Recorded results from multi-node experimental setup: 17

3 Evaluating Results 18

4 Conclusion 19

5 Appendix 20

1

1 Introduction

Today, machine learning algorithms are widely used in data analysis, classification and prediction
problems. The Allianz Global Data and Analytics (GD&A) department drives the development
of data science and big data related topics inside the company.

To help the GD&A team to keep up with evolving technology in big data and analytics, the
project aims to compare state of the art algorithms in local and distributed environments.

1.1 Project Goals

The goal of this interdisciplinary project is to compare the effects of horizontal and vertical scaling
on resource consumption and model performance. This allows the selection of the right computa-
tional environment depending on the problem and data (size, characteristics, etc.). Additionally,
we will obtain experimental results on how varying the computational resources of a system af-
fects the performance of a machine learning algorithm. This gives us a benchmark for comparing
different programming tools like H2O vs native R. The machine learning algorithm we use for
such a comparison is GBM. We comment later on the choice of this algorithm and datasets used
for benchmarking.

1.2 Description of Software Stack

We use R as a local execution environment for machine learning algorithms and H2O as a dis-
tributed one. The dataset used for evaluation contains hundreds of columns (features) along with
millions of rows. We will apply Gradient Boosted Machines (GBM) to solve a classification task
and compare the results in both environments with different setups.

1.2.1 Nomad

What is Nomad? Briefly, Nomad is a distributed cluster manager and scheduler (X. Wang n.d.). It
is suitable for batch workloads and microservices (X. Wang n.d.). Nomad is Scalable, can scale to
thousands of nodes and supports multi-datacenter/regions. The picture below shows the Nomad
client-server architecture.

Figure 1: Nomad Client-Server Architecture

2

A Nomad job can be defined using a job template. A job template can be defined as follows:

Job Template Comments

job "rstudio" {

region = "us"

datacenters = ["us-west -1", "us-east -1

"]

type = "service"

task {

driver = "docker"

config {

image = "zeecitizen/rstudio"

}

resources {

cpu = 500 # MHz

memory = 128 # MB

}

}

}

#Define our simple Rstudio Job

#Run only in US -West -1 data center

#Define the rimple RStudio task using

Docker

#Name of the Docker image to use

#Allocating resources for Nomad job

Below is the hierarchy of a Nomad Job.

Job Template Comments

Hierarchy of a Nomad Job

- Job

- Task Group

-Task

Comments:

The general hierarchy for a job is shown

on left.

Each job file has only a single job ,

however a job may have multiple

groups , and each group may have

multiple tasks. Groups contain a set

of tasks that are co-located on a

machine.

1.2.2 Docker:

Docker is used for the automation of deployment of application inside software containers. It is an
open-source project (Profiles n.d.) (Passage n.d.). Docker allows us to package our applications
into a standardized unit for software development called a container. Docker containers wrap a
piece of software in a complete filesystem that contains everything needed to run: code, runtime,
system tools, system libraries – anything that can be installed on a server. This guarantees that
the software will always run the same, regardless of its environment.

3

The Docker architecture provides independence from host environment. Docker containers are
reproducible and portable for deployment. Docker is used for the automation of deployment of
application inside software containers. It is an open-source project (T. Brown n.d.). Docker uses
a client-server architecture as shown below:

Figure 2: Docker Architecture showing different components

An image is a combination of the filesystem and parameters to use at runtime. A docker
image provides necessary libraries for software to run on a designated operating system. A Docker
container is a runnable instance of a Docker image. Docker can read instructions from a Dockerfile
and build images in an automatic manner. A DockerFile is a text document which contains the
scripts (commands) used to build or make an image. Below is an example of a simple Dockerfile.

Figure 3: Image shows a simple docker command being run on a Linux terminal

1.2.3 R

R is a language and environment for statistical computing and
graphics (Wikipedia 2017c). R enables a wide range of statis-
tical (classical statistical testing, time-series analysis, clustering,
classification, linear and non-linear modelling) and graphical pro-
gramming operations in a highly extensible manner.

4

1.2.4 H20

H2O is open-source browser based software for big-data analysis (Wikipedia 2017b). It is used
for exploring and analyzing datasets held in the cloud or distributed systems. H2O uses iterative
methods that provide quick answers using all of the client’s data. When a client cannot wait for
an optimal solution, the client can interrupt the computations and use an approximate solution.

H20 is a Java Virtual Machine. It has been optimized to perform ”in memory” processing
of parallel, distributed and machine learning algorithms on clusters. A ”cluster” is a type of
software construct which can be started from a standalone laptop, server or across different nodes
of a cluster of real machines which may include computers that constitute a Hadoop cluster.
Documentation states that the ”sum of memory capacity across all H20 nodes in a cluster gives
us the cluster’s total memory capacity” (Rickert n.d.)

Figure 4: The H2O internal architecture

5

1.2.5 Description of Algorithm used

Gradient boosting technique is a type of machine learning craft developed to tackle classification
and regression problems. It generates prediction models in the shape of a group of weak prediction
models, for example decision trees. Usually, the model is developed in a stage-wise manner and
generalization is done by optimizing arbitrary differentiable loss function (Wikipedia 2017a).

Gradient boosting is basically an optimization algorithm which works with a reasonable cost
function. They originated due to observation of Leo Breiman (Breiman 1997). Jerome H. Friedman
developed explicit regression gradient boosting algorithms, and later on (Friedman 1999).

A weak learner or weak hypothesis is termed as the one whose conduct is at least somewhat
better than a random chance. Gradient boosting combines weak ”learners” into a strong single
learner through an iterative process. The basic aim is to make use of weaker learning methods
repetitively. Running these several times helps to get a cycle of hypotheses, each one retargeted on
the inputs that the previous hypothesis determined as misclassified and difficult (Brownlee 2016).
Gradient Boosting is simply about ”boosting” several weaker predictive models into a strong one,
in shape of ensemble of weak models. To build the strong model, we need to find a good way
to ”combine” weak models. Boosting ascribes to this general problem of generating an accurate
prediction rule by joining rough and moderately inaccurate rules-of-thumb, as shown by [Freund
and Schapire 1995]. The GBM algorithm always makes use of data samples which are ”difficult”
to learn in previous rounds, in order to train models. It leads to an ensemble of models that are
good at learning different ”parts” of training data. As base learners, Gradient boosting is typically
employed with fixed size decision trees (especially CART trees), as mentioned by Professor Trevor
Hastie in his talk ”Gradient Boosting Machine Learning”; which took place at H20.ai, Stanford
University. In this talk, Prof. Hastie also pointed out that generally gradient boosting outperforms
random forest and random forest performs better than the individual decision trees. Thus the
correlation:

Gradient Boosting >Random Forest >Bagging >Single Trees

For the purpose of this document, to reduce technical complexity, we leave further detail to
the reader to explore.

GBMs are a class of commanding machine-learning mechanism that have seen substantial
success in a broad range of practical applications.

Gradient boosting revolves around three constituents.

1. A loss function in need of optimization

2. A weak learner to attempt predictions.

3. An additive model to minimize the loss function by adding weak learners. (Chen et al. 2017)

1.2.6 Why we chose GBM as algorithm for our experiments?

In machine learning, a loss function or cost function is a function that maps an event or values of
one or more variables onto a real number intuitively representing some ”cost” associated with the
event (Reviews 2016). An optimization problem seeks to minimize a loss function.

In GBMs, the application of loss functions can be inconsistent. There is vast variety of loss
functions derived so far and with the possibility of instrumenting one’s own task-specific loss.
Overall, the researcher has the option to choose the loss function. The customizability of GBMs
to perform data-driven tasks comes from high flexibility. It brings a great degree of freedom into
the model design enabling the choice of most suitable loss function a matter of trial and error
(Natekin and Knoll 2013).

Implementation of Boosting algorithms is comparably simpler, which allows one to examine
different model designs. Moreover, GBMs have demonstrated sizable success in not only practical

6

applicatins but also in different data-mining and machine-learning challenges (Bissacco et al.
2007)(Hutchinson et al. 2011)(Pittman and K. A. Brown 2011)(Johnson and Zhang 2014). .

Table 1: Project Planning - Phases

Planned Milestone 1
Setting up tools

Automate launching of distributed instances to run the H2O.ai interface. We
use Docker for setting up a portable quick-launch environment to run H2O. We
then write Nomad jobs for reserving varying computational resources for these
Docker containers. A dockerized launchable instance for R is already available.

Planned Milestone 2
Conducting experiments

A CSV data set of records with flight details from United States local
commercial flights is used (RITA n.d.). We use a subset of
flight data from October 2005 to April 2007. There are nearly 21 million
records in total. The data must first be formatted correctly to input to H2O
and R. Then, we will train a classifier. The possible result we want to achieve
is an estimate of the probability (chance) of a particular flight to be delayed.
In this pursuit, we consider all necessary contributing factors that influence
the flight times.

To test the impacts of resource allocation, on performance of running
GBM on H2O and R, we run these algorithms as distributed jobs on the
cluster. This allows us to compare a parallel environment to traditional R
environment answering an essential question for our team on how we can
improve the speed of machine learning algorithms with optimal utilization of
our current computing cluster. Model evaluation will be performed to
compare the estimated classification performance.

Planned Milestone 3
Documentation

Outcome of this phase is a report containing the main results and findings of
the experiments. It should give a detailed overview of the experimental setup
and results, showing how different setups influence different factors such as
model performance, cost, resource consumption, time, etc.

2 Goals Achieved

2.1 Milestone 1 - Setting up tools

2.1.1 Setting up H20

We studied how to make H2O installation process into an executable Docker instance. For this
purpose we use a base of Ubuntu:14.04. We then proceeded to downloading the latest stable
release of H2O.ai and exposing the necessary ports all within a Dockerfile. Our Dockerfile can
now be built/run by the team by following these simple steps:

2.1.2 Setting up Nomad

After setting up H2O we had to automate launching of distributed instances of H2O. For this
purpose we studied Nomad and how it works. During the first month of the project, we were able
to code a Nomad job template successfully. The Nomad template allows integration of a new tool
H2O into an existing web browser based interface used by the team. Using this interface, the team
can start/stop H2O on one click of a button. This saves the time required to set up the right host
operating system and libraries for H2O to run. The Dockerfile described in the previous section
is used to run H2O in a portable container.

7

We committed the coded Nomad job template to the central source code repository of Allianz
in Munich. Here is a screenshot of the web interface (called Broccolli) where we integrated our
Nomad template for use:

Figure 5: Web Interface Cluster Broccoli where H2O is now added

H2O is now a tool available for use by the Allianz teams through their existing web interface.
This has been a definite success of the first milestone of this project.

The web interface where we integrated our Nomad template is called Cluster Broccoli.

The Nomad template that we were able to write for running H2O can be found at this link:
https://github.com/zeecitizen/cluster-broccoli/blob/master/templates/h2o/template.json

8

Following are few lines from the Nomad Template for H2O:

{

"Job": {

"Region": "global",

"ID": "{{id}}",

"Datacenters": [

"dc1"

],

"Constraints": null ,

"TaskGroups": [

{

"Name": "h2o",

"Count": {{nodes}},

"Constraints": null ,

"Tasks": [

{

"Name": "h2o",

"Driver": "raw_exec",

"User": "",

"Config": {

"command": "nomad -docker -wrapper",

"args": ["--entrypoint", "java",

"--net", "host",

"-e", "H2O_NODE_COUNT ={{ nodes}}",

"zeecitizen/h2o -zeeshan:latest",

"-Xmx4g", "-jar", "/opt/h2o.jar",

"-name", "{{id}}",

"-ip", "${NOMAD_IP_h2o}",

"-port", "${NOMAD_PORT_h2o}"]

}

}

9

2.2 Milestone 2 - Conducting experiments

The scripts used for experiments with running GBM algorithm on RStudio with different config-
urations is published at this github repository

Scripts can be found at this link:
https://github.com/zeecitizen/H2O-vs-R-GBM

A small excerpt from the code for running gbm within h2O

system.time({

md <- h2o.gbm(x = Xnames , y = "dep_delayed_15min",

training_frame = dx_train , distribution = "

bernoulli",

ntrees = 1000,

max_depth = 16, learn_rate = 0.01, min_rows =

1,

nbins = 100)

})

2.2.1 Description of Data Set used

The objective is to make the machine consider all possible aspects
that will influence an airline flight. This helps us compute the
chance of whether a flight will be delayed.

Flight details of all the commercial flights within the USA are
included in our data set (RITA n.d.). These details include flight
departure and arrival timings, from October 2005 to April 2007.
This is a subset of original dataset. It takes nearly 1 Gigabyte
of memory with approximately 21 million total records, when un-
compressed.

Contingency plans can be developed by users if we can help them by predicting flight delays.
Flight options can be ranked accordingly and users can be altered in advance by recommendation
engines for possible delays. Some businesses may even opt to spend more to guarantee timely
arrival of their shipments.

10

Table 2: Description of our dataset
Name Description (Data by RITA n.d.)
Year 1987-2008
Month 1-12
DayofMonth 1-31
DayOfWeek 1 (Monday) - 7 (Sunday)
DepTime actual departure time (local, hhmm)
CRSDepTime scheduled departure time (local, hhmm)
ArrTime actual arrival time (local, hhmm)
CRSArrTime scheduled arrival time (local, hhmm)
UniqueCarrier unique carrier code
FlightNum flight number
TailNum plane tail number
ActualElapsedTime in minutes
CRSElapsedTime in minutes
AirTime in minutes
ArrDelay arrival delay, in minutes
DepDelay departure delay, in minutes
Origin origin IATA airport code
Dest destination IATA airport code
Distance in miles
TaxiIn taxi in time, in minutes
TaxOut taxi out time in minutes
Cancelled was the flight cancelled?
CancellationCode reason for cancellation (A = carrier, B = weather, C = NAS)
Diverted 1 = yes, 0 = no
CarrierDelay in minutes
WeatherDelay in minutes
NASDelay in minutes
SecurityDelay in minutes
LateAircraftDelay in minutes

More details on Dataset here:
http://stat-computing.org/dataexpo/2009/the-data.html

11

2.2.2 Bash Script used for Generating the data set

The following linux bash script brings CSV data files for year 2005, 2006 and 2007 containing data
which is described in the previous section.

Linux Bash Script

for yr in 2005 2006 2007; do

wget http://stat -computing.org/dataexpo /2009/ $yr.csv.bz2

bunzip2 $yr.csv.bz2

done

As a next step we loaded this data into H2O for performance comparisons.

2.2.3 Script 1 for comparison - Running GBM using H2O on RStudio

To run the GBM algorithm on our dataset, we’ve written this script (given below). Szilard Pafka
has also used similar scripts in his work at Pafka n.d.(b). Considering Szilard’s work is incomplete
and limited, we’ve written our own scripts suitable to our experimental setup. The script is written
using R language which calls the H2O libraries.

We vary the dataset from 1 million rows to ten million rows and record the time it takes for it
to train a model and predict the result. Finally, we print out the accuracy.

R Script 1

library(h2o)

h2o.init(max_mem_size="60g", nthreads =-1)

dx_train <- h2o.importFile(path = "train -1m.csv")

dx_test <- h2o.importFile(path = "test.csv")

Xnames <- names(dx_train)[which(names(dx_train)!="dep_delayed_15min")]

system.time({

md <- h2o.gbm(x = Xnames , y = "dep_delayed_15min", training_frame =

dx_train , distribution = "bernoulli",

ntrees = 1000,

max_depth = 16, learn_rate = 0.01, min_rows = 1,

nbins = 100)

})

system.time({

print(h2o.auc(h2o.performance(md , dx_test)))

})

12

2.2.4 Script 2 for comparison - Running GBM using R only

We’ve written this script (given below) to run the GBM algorithm in RStudio on our dataset
using simple R without H2O (for performance comparison reasons). We vary the dataset from 1
million rows to ten million rows and record the time it takes for it to train a model and predict
the result. Finally, we print out the accuracy

R Script 1

library(ROCR)

library(gbm)

set.seed (123)

d_train <- read.csv("train -1m.csv")

d_test <- read.csv("test.csv")

d_train$dep_delayed_15min <- ifelse(d_train$dep_delayed_15min =="Y" ,1,0)

d_test$dep_delayed_15min <- ifelse(d_test$dep_delayed_15min =="Y" ,1,0)

facCols <- c("UniqueCarrier", "Origin","Dest", "Month", "DayofMonth", "

DayOfWeek")

numCols <- c("DepTime","Distance")

for (k in facCols) {

d_train [[k]] <- as.factor(d_train [[k]])

d_test [[k]] <- as.factor(d_test [[k]])

}

for (k in numCols) {

d_train [[k]] <- as.numeric(d_train [[k]])

d_test [[k]] <- as.numeric(d_test [[k]])

}

system.time({

md <- gbm(dep_delayed_15min ~ ., data = d_train , distribution = "

bernoulli",

n.trees = 1000,

interaction.depth = 16, shrinkage = 0.01, n.minobsinnode = 1,

bag.fraction = 0.5, n.cores = 32)

})

phat <- predict(md, newdata = d_test , n.trees = md$n.trees , type = "

response")

rocr_pred <- prediction(phat , d_test$dep_delayed_15min)

performance(rocr_pred , "auc")@y.values [[1]]

Recorded results from single-node experimental setup:

13

Table 3: Recorded results from single-node experimental setup:

Algorithm under test: GBM
Method: Comparing run times for simple R and H2O in R
Tool Used N data rows Time (sec) RAM (GB) AUC
R 10K 22.957 52.78 0.64879

100K 230.425 52.78 0.72306
1M 5121.748 52.78 0.7411664
10M N/A

H2O 10K 302.662 52.78 0.6613423
100K 914.307 52.78 0.7153
1M 2032 52.78 0.7565
10M N/A

Figure 6: Run time for GBM using R only vs H2O in R

14

Figure 7: Performance of H2O in R vs R Only

Note:

Gradient boosting is typically used with decision trees of a fixed size as base learners, as
mentioned by (Xu et al. 2016). We keep the number of trees (M) to be 1000 in our runs. Friedman
commented on the trade-off between the learning rate (v) and the number of trees (M) in his first
paper regarding gradient boosting. He recommended a small value for the learning rate ¡0.1
(Configure the Gradient Boosting Algorithm n.d.).

Larger M values result from smaller v values for identical risk in training. A balance of tradeoffs
between both the values is achieved. This was also commented upon by Friedman 1999. Setting
v to very small (v¡ 0.1) and then choosing M by early stopping seems to be the best strategy. We
keep the learning rate to a low of 0.01 in our runs.

2.3 H2O Multi-Node Experiment:

H2O allows to run distributed implementations of different algorithms like GBM, Random Forest
and Deep Neural Nets. H2O can be setup to speed up machine learning problems on a laptop as a
local multi-core cluster, or it can be used in a multi-node cluster setting for example, on Amazon
EC2. The purpose of our experiment is to see how scaling the number of nodes in an H2O cluster
effect the running time of a particular model for classification.

2.3.1 Cluster Setup for H2O multi-node experiment

For the purpose of our multi-node experiment, we set up an H2O cloud which can consist of several
nodes. We use a text file called ‘flat file’ to describe the topology of an H2O cluster. The flat file
contains IP addresses of each node on the cluster and it needs to be passed to each node in the
cluster so that they may connect to form a cluster. New H2O nodes can only join in at the time
of launch.

Below is a screenshot of how our H2O server looks like with 7 nodes added to the H2O cloud
during our experiments. Afterwards we describe our dataset.

15

Figure 8: Successful creation of a cluster with 7 nodes.

Figure 9: H2O showing nodes added to cloud based on total cluster memory

16

Dataset for multi-node H2O experiment:

We keep the problem set the same as in our single node experiment. That is: using publicly
available airlines dataset to correctly predict potential future flight delays (Hill n.d.). However,
we use a slightly different data set. The dataset utilized is a sample of flight data spanning over
two decades. This has been done to ensure the quick download and import process (A. Wang n.d.

We had to download a total of 14.5GB data containing more than 150 million rows from
year 1987-2013. This dataset contains 26 years of flight information (Bureau of Transportation
Statistics n.d.). It will be used to predict cancellations and delays (RITA n.d.).

We can find the Dataset at the following link:
https://s3.amazonaws.com/h2o-airlines-unpacked/allyears.1987.2013.csv

Since the available memory on the cluster for our experiment is 12GB, we split this dataset
and used a 4 GB CSV file with 38 million rows.

2.3.2 Recorded results from multi-node experimental setup:

For our second experiment, we deployed multi-node H2O on a computing cluster created using
Docker on a Core i7 machine with 12GB of available RAM. We set up multiple docker containers
running Ubuntu 14.04 to act as nodes. Each node is initialized with specific memory. Each docker
container (node) runs an H2O instance using this command given in the Dockerfile:

Command for launching H2O instance in Dockerized container:
java -Xmx4g -jar /opt/h2o.jar -flatfile flatfile.txt -port 54321

The port number (54321 in this case) is changed to add more H2O instances to the cluster.
The second parameter -Xmx4g is changed to vary the memory available to the node. The IPs and
port numbers are listed in a text file called the ‘flat file’ copies of which are kept on each node.
H2O reads the flatfile and creates an H2O Cloud for us.

Figure 10: Time for GBM runs in multi-node H2O

17

H2O Script (Flow) used for running GBM on this dataset:
https://github.com/zeecitizen/H2O-vs-R-GBM/blob/master/GBM Airlines Classification.flow

Results from Figure 10 are explained in the table below.

Table 4: Method: Comparing run time for H2O in R by varying # of Nodes. #Data Rows: 38
Million

Time
(sec)

#Nodes Cluster Memory AUC Observations

00:09:27 2 4 GB,2g per node 0.681990 4GB of memory is not sufficient to contain dataset
and JVM together. Thus, a slow down due to swap-
ping.

00:05:18 1 6 GB,6g per node 0.681991 The available memory on single node is enough to
process the whole dataset. It takes 5 minutes.

00:03:36 2 6 GB,3g per node 0.681990 Distributing the task to 2 Nodes while keeping the
overall available memory to cluster same, we see a
reduction in the time it takes for the algorithm to
run.

00:05:42 3 6 GB,2g per node 0.681991 Increasing the number of nodes to three has negligi-
ble impact as the dataset easily fits in the two nodes
and does not need a third.

00:04:31 6 6 GB, 1g per node 0.681991 Having six nodes of 1gb each means adding mainte-
nance overhead. Still performs better than a single
node with 6gb available memory.

3 Evaluating Results

This section evaluates our result of multi-node H2O experiment: By increasing the number of

nodes available to H2O we saw that H2O actually distributes the job to the cluster, successfully
reducing the time taken for computation.

The results also show that if the dataset is small and can fit on a single node, adding more
nodes do not influence the ‘time of run’ but rather adds computational overhead.

For best performance, H2O recommends on their website to size the cluster to be about four
times the size of data (but to avoid swapping, memory allocation (Xmx) must not be larger than
physical memory on any given node). Giving all nodes the same amount of memory is strongly
recommended (H2O works best with symmetric nodes). Larger datasets slow down H2O as the
underlying model becomes complex. Increasing number of nodes does not affect AUC much.

18

4 Conclusion

An analysis of R and H20 implementations of basic GBM reveals R implementation’s memory use
inefficiencies. The data has to be one-hot encoded due to the fact that R implementation can’t
deal with large number of columns by default. One possible solution is to proceed with feature
selection scheme to retain some of the features (Pafka n.d.(a). On the other hand, distributed
nature of H20’s algorithm implementations make them highly scalable to very large datasets,
which may not even size into RAM on a single machine. The H20 implementation is memory
efficient and fast as it utilizes all the available cores (Pafka n.d.(a)). Categorical variables are
handled automatically. Compared with GBM R package, H20’s implementation is more accurate;
one reason could be that it properly deals with categorical variables.

By default, R has matrix dynamic libraries that are meant to utilize one CPU core only.
Revolution R community edition comes with Intel Match Kernel Library. This enables some
extent of matrix computations in a parallel order but definitely it is still less efficient than the
H20 (Data Science n.d.). The R implementation uses single processor core. For example, in usual
cases, At n = one million, R can be seen as running out of memory. In general, features of the R
language are well suited for data wrangling or visualization tasks. However, inefficiency has been
observed only with the implementation used by the GBM package. Even with the limited amount
of data we used in our experimental setup, R seems to slow down and sometimes fails to generate
a model in reasonable time unless we add extensive memory. Same was also found by KDDCup98
competition winners ((Staff) n.d.). H20 can deal with greater amounts of data really quick. For
example, for one million rows, execution of the model takes less than 2 minutes, which is quiet
fast. This efficiency is also observed by (Vries n.d.).

We can interface R with H2O using their R API. The advantage of blending together R and
H20 is that the H20 implementation is superb at maneuvering performance out of multi-cores
or clusters with little effort from the user. It is much more difficult to reach the same levels of
efficiency with R alone. Better data indexing and exploitation of parallelism to the fullest extent
are some of the additional reasons for H20’s faster performance.

R is intended for use on data that fits into memory on one machine. So, R can very quickly
consume all available memory. It is not intended for use with streaming data, big data or work-
ing across multiple machines. H20 beats R in memory management especially when it comes to
developing large scale machine learning models. However, powerful statistical and graphical ca-
pabilities of R still make it a good fit for data processing tasks which don’t require much scaling.
For example, the evaluation step in machine learning can be done in R. R is also awesome when
it comes to the automation of modeling flows. If we want to re-run our model several times, the
web interface of H2O may be inconvenient as the user has to re-enter the selections he/she has
made before.

Any new research in machine learning likely has an accompanying R package to go with it.
So, in this respect, R stays at the cutting edge. R is free and also, open source. But same is the
case with H20 which has been kept on the cutting edge of Machine Learning by the three of its
Stanford professors (Peck n.d.).

19

5 Appendix

List of Figures

1 Nomad Client-Server Architecture . 2

2 Docker Architecture showing different components 4

3 Image shows a simple docker command being run on a Linux terminal 4

4 The H2O internal architecture . 5

5 Web Interface Cluster Broccoli where H2O is now added 8

6 Run time for GBM using R only vs H2O in R . 14

7 Performance of H2O in R vs R Only . 15

8 Successful creation of a cluster with 7 nodes. 16

9 H2O showing nodes added to cloud based on total cluster memory 16

10 Time for GBM runs in multi-node H2O . 17

List of Tables

1 Project Planning - Phases . 7

2 Description of our dataset . 11

3 Recorded results from single-node experimental setup: 14

4 Method: Comparing run time for H2O in R by varying # of Nodes. #Data Rows:
38 Million . 18

20

References

[1] Alessandro Bissacco, Ming-Hsuan Yang, and Stefano Soatto. “Fast human pose estimation
using appearance and motion via multi-dimensional boosting regression”. In: Computer Vi-
sion and Pattern Recognition, 2007. CVPR’07. IEEE Conference on. IEEE. 2007, pp. 1–
8.

[2] Leo Breiman. Arcing the edge. Tech. rep. Technical Report 486, Statistics Department,
University of California at Berkeley, 1997.

[3] Taylor Brown. Containers - Bringing Docker To Windows Developers with Windows Server
Containers. url: https://msdn.microsoft.com/en-%20us/magazine/mt797649.aspx.

[4] Jason Brownlee. A Gentle Introduction to the Gradient Boosting Algorithm for Machine
Learning. [Online; accessed 11-July-2017]. 2016. url: http://machinelearningmastery.
com/gentle-%20introduction-gradient-boosting-algorithm-machine-%20learning/.

[5] United States Department of Transportation Bureau of Transportation Statistics. Airline
On-Time Statistics and Delay Causes. url: https://www.transtats.bts.gov/OT_Delay/
OT_DelayCaus%20e1.asp.

[6] Chu-Song Chen, Jiwen Lu, and Kai-Kuang Ma. Computer Vision–ACCV 2016 Workshops:
ACCV 2016 International Workshops, Taipei, Taiwan, November 20-24, 2016, Revised Se-
lected Papers. Vol. 10118. Springer, 2017.

[7] How to Configure the Gradient Boosting Algorithm. http://abunchofdata.com/how-to-configure-
the-gradient-boosting-algorithm/. url: http://www.300166.net/language/go/40511115703940971550.
htm%20l.

[8] Society of Data Science. How is H2O faster than R or SAS? url: https://datascience.
stackexchange.com/questions/6884/how-is-%20h2o-faster-than-r-or-sas/6896.

[9] Yoav Freund and Robert E Schapire. “A desicion-theoretic generalization of on-line learning
and an application to boosting”. In: European conference on computational learning theory.
Springer. 1995, pp. 23–37.

[10] J Friedman. “Greedy Function Approximation: A Gradient Boosting Machine http://www.
salford-systems. com/doc”. In: GreedyFuncApproxSS. pdf (1999).

[11] Brandon Hill. intro to python. url: https://github.com/h2oai/h2o-tutorials/blob/
master/tutorials/intro-to-r-python-flow/intro-to-python.py.

[12] Rebecca A Hutchinson, Li-Ping Liu, and Thomas G Dietterich. “Incorporating Boosted
Regression Trees into Ecological Latent Variable Models.” In: AAAI. Vol. 11. 2011, pp. 1343–
1348.

[13] Rie Johnson and Tong Zhang. “Learning nonlinear functions using regularized greedy forest”.
In: IEEE transactions on pattern analysis and machine intelligence 36.5 (2014), pp. 942–
954.

[14] Alexey Natekin and Alois Knoll. “Gradient boosting machines, a tutorial”. In: Frontiers in
neurorobotics 7 (2013).

[15] Szilard Pafka. Benchmarking Random Forest Implementations. url: http://datascience.
la/benchmarking-random-forest-%20implementations/.

[16] Szilard Pafka. Incomplete benchmark for .. machine learning libraries for classification. url:
https://github.com/szilard/benchm-ml.

[17] Cloud Passage. CloudPassage Announces Support for Docker. url: https://www.cloudpassage.
com/company/press-%20releases/cloudpassage-announces-support-for-docker/.

[18] Raymund Peck. What does H2O.ai (formerly 0xdata) do? url: https://www.quora.com/
What-does-H2O-ai-formerly-0xdata-do.

[19] Simon J Pittman and Kerry A Brown. “Multi-scale approach for predicting fish species
distributions across coral reef seascapes”. In: PloS one 6.5 (2011), e20583.

21

[20] VB Profiles. Docker Landscape. url: https://www.vbprofiles.com/markets/docker-
%20landscape-56728f6e1493f72993003d24.

[21] CTI Reviews. Introductory Statistics. Cram101, 2016. isbn: 9781497014794. url: https:
//books.google.de/books?id=LT7aAwAAQBAJ.

[22] Joseph Rickert. Diving into H20. url: http://blog.revolutionanalytics.com/2014/
04/a-%20dive-into-h2o.html.

[23] RITA. Get the data. url: http://stat-%20computing.org/dataexpo/2009/the-data.
html.

[24] WP Engine (Staff). H2O vs R – Winning KDDCup98 in 10 minutes with H2O. url: https:
//blog.h2o.ai/2014/12/winning-kdd/.

[25] Andrie de Vries. How the MKL speeds up Revolution R Open. url: http://blog.revolutionanalytics.
com/2014/10/revolution-r-open-mkl.html.

[26] Amy Wang. Airlines Delay. url: https://github.com/h2oai/h2o-3/blob/master/h2o-
docs/src/product/flow/packs/examples/Airlines_Delay.flow.

[27] Xu Wang. Create A Nomad Cluster On GCP with Terraform. url: https://github.com/
xuwang/gcp-nomad.

[28] Wikipedia. Gradient boosting — Wikipedia, The Free Encyclopedia. [Online; accessed 11-
July-2017]. 2017. url: https://en.wikipedia.org/w/index.php?title=Gradient_
boosting&oldid=790302586.

[29] Wikipedia. H2O (software) — Wikipedia, The Free Encyclopedia. [Online; accessed 11-July-
2017]. 2017. url: https://en.wikipedia.org/w/index.php?title=H2O_(software)
&oldid=769723012.

[30] Wikipedia. R (programming language) — Wikipedia, The Free Encyclopedia. [Online; ac-
cessed 11-July-2017]. 2017. url: https://en.wikipedia.org/w/index.php?title=R_
(programming_language)&oldid=790313533.

[31] Mengwen Xu et al. “Demand driven store site selection via multiple spatial-temporal data”.
In: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. ACM. 2016, p. 40.

22

