Seminar Code Generation
Winter Term 2015/2016
Automatic detection of dynamic data structures for
C/C++ binaries

Mohammad Zeeshan
Technische Universitat Munchen

22.01.2016

Abstract

Reversing data structures from C/C++ binaries de-
pends on low-level programming constructs such as
structs or variables. Forensics analysis and reverse
engineering is very hard if the detailed informa-
tion about the pointer structures is not known. In
this paper we have proposed a tool called ”Mem-
Pick” to cater this need. MemPick detects and
classifies high-level data structures from binaries.
It keeps track of the links between the memory ob-
jects that evolve during program execution.Based
on the shape of the memory objects and these links,
it identifies and classifies many commonly used data
structures. These data structures include different
types of linked lists, many types of trees and graphs.
For evalution of MemPick, four different file system
implementations, 10 real world applications and 16
libraries are used. Based on the results obtained,
MemPick is categorized as one of the high accuracy
data structure identification tools.

Keywords: Data structures, shape analysis,
reverse engineering, dynamic binaries analysis

1 Introduction

Reverse engineering is the process of taking binary
code of an application and producing the source
code from it. One of the key factors in reverse en-
gineering is identification of data structures used in
the application as most of the time the program
code acts on these data structures to perform spe-
cific tasks. Reverse engineering plays a vital role
in malware identification and binary optimization.
For instance a basic optimizer may keep nodes of a
linked list in small and consecutive pages in mem-
ory to reduce seek time and latency of the read and
writes from the disk into main memory. Further-
more, an optimizer which is aggressive variant of
the basic one, may replace the data structure en-
tirely with a more efficient alternate data represen-
tation.

This paper summarizes the contents of [3] with its
examples and definitions ' A tool named Mem-
Pick created by [3] is discussed. MemPick finds
and identifies data structure using C/C++ bina-
ries. Shape of data structure is analysed to identify
type of the data structure. For instance, intercon-
nected heap buffers may represent linked list or a
binary tree. Currently this tool identifies single and

1Results presented in this paper where we test MemPick
on different software programs have been taken from runs
done by [3].

double linked list, binary and n-ary trees, various
balanced trees, sentinel nodes, threaded trees and
graphs. Overlapping data structures are also identi-
fied.MemPick only focuses on dynamic changing of
shape for identifying type of data structures. Func-
tions or characterization of content is not identified
in MemPick.

As MemPick is based on dynamic analysis tech-
nique hence it only detects data structures based
on code coverage of the profiling runs. Other anal-
ysis technique is static analysis, in which reasoning
is done without execution. This type of analysis
is used for components that are difficult to execute.
Static analysis is not suitable for C/C++/Assembly
because of pointer aliasing and indirect control flow
changes. Dynamic analysis reasons about specific
execution path resulting in accuracy and precision
of results.

2 OQOutline

Architecture of the application is discussed in detail
in section 3. Section 4 explains the low-level ma-
nipulation of memory graphs. Section 5 shows the
high-level representation of data structures. The
intricacies of data structure classification are ex-
plained in section 6 which is followed by section
7 elaborating height balanced trees. Section 8 ex-
plains the information provided to the user. Exten-
sive evaluation of the tool is performed in section
9. Computational complexity and scalability of the
tool is discussed in section 10. Section 11 explains
the limitations and future extensions of MemPick.
In the last two sections related projects are dis-
cussed and conclusion is mentioned.

3 MemPick

Figure 2 is used as running example for understand-
ing approach of MemPick. It also includes overlap-
ping data structures: a child tree, a parent tree
and a singly linked list for tree traversal. Mem-
Pick works in three stages. First, application binary
is executed and sample executions are recorded.

Binary for \
Analyzing / “e—e

Data Structures.

#‘ Identified
-

~ By MemPick

2.0ffline analysis for detecting
individual and overall data

1.Run Binary for
Heap Allocation &
Access structures

3.Final Mapping

Figure 1: Highlevel Overview of MemPick.

These executions are fed to analysis engine which
identifies data structures. Finally results are com-
bined and presented. High-level overview of Mem-
Pick is shown in figure 1.

Intel’s PIN binary instrumentation framework pro-
vides API that is used for tracking and recording
the execution of application [10]. MemPick uses
PIN for storing address of all buffers allocated on
heap and memory allocation functions. In offline
analysis phase links between heap buffers are anal-
ysed for identifying data structures. This phase
consist of following four steps.

1. Heap buffers and associated links are arranged
in a memory graph which reflects how connec-
tions are evolved.

2. After analysis graph is split into objects ac-
cording to their types as shown in figure 2a
and 2b.

3. MemPick analyses the links in each partition
to identify overlapping structures and then cat-
egorized each partition

4. In the final step, MemPick tries to identify dif-
ferent types of tree like AVL and red-black tree.

Each step is discussed in detail in respective sec-
tions below.

4 Memory Graphs

Memory graph only identifies links that exist be-
tween heap objects. For identifying the type of
data structure in a given graph, MemPick analyses
connection between nodes for identifying different
logical types. Two different heap objects share a

logical type if one object can be replaced by other
or their low level C/C++ type is same.

Graphs are built in MemPick like RDS [7] by in-
serting new node in graph when a heap buffer is al-
located. Edges are added or deleted between nodes
based on instructions that add or delete pointers
between objects respectively. MemPick then tags
graphs with logical type by first eliminating instruc-
tions that are type agnostic. Same logical type ob-
jects are identified by checking if both objects can
be used as operand in the same instruction.

Type reference algorithm is used for identifying log-
ical type in MemPick. Every instruction is assigned
with a pair of unique tags, including tags for both
its source and destination operands. A unique tag is
assigned to a heap object when it acts as an operand
in a given instruction thus ensuring all heap objects,
belonging to same instruction share a unique tag.
If another tag is already associated with a heap ob-
ject, then they have same logical type and both tags
are merged as one. All heap objects are checked for
consistency resulting in quick merging of tags and
categorization of logical types used in the program.
For avoiding ambiguous typing, MemPick assigns
Type Aware for instructions that stores pointer to
heap buffer for a memory location at specific con-
stant offset in another heap buffer. Instructions
that store non-pointer values or pointers to different
offsets are ignored.

5 Memory Graph for Identi-
fication of Individual Data
Structures

MemPick divides the memory graph into sub-
graphs, each comprising of individual data struc-
tures. Using these data structures we will perform
shape analysis. Firstly, MemPick eliminates from
the graph those links that connect nodes of differ-
ent types. In the example from Figure 2, one of the
partitions illustrates the growth of the tree.

The specific properties of a data structure do not
necessarily remain unaltered all over the execution.
For example, if an application uses a red-black tree,

the tree is often unstable just before a rotate op-
eration. However when the application does not
modify the tree, its shape maintains the expected
features. Therefore, MemPick performs its shape
analysis only on dormant data structure.
MemPick defines dormant periods as the number of
instructions executed. Specifically, we measure the
interval of the break between alterations of the data
structures in cycles and then decide on the longest
n percentage as the inactive phase. To make sure
that we never pick active phase, we need to remain
adequately choosy. MemPick uses dynamic gap size
to familiarize itself to the characteristics of each
binary and the data structure.

The method defined in MemPick benefits from two
core properties, 1) it assures a lower bound of inac-
tive phase for every data structure, 2) it provides
maximum robustness. Since sentinel nodes distort
the shape of data structure, we detect and separate
them before passing even snapshots of each data
structure to the shape analyser.

To locate sentinel nodes in a partition of the mem-
ory graph, MemPick searches for outliers in num-
ber of incoming edges for each node. While this
strategy produces good results for lists, trees, and
graphs, it might break some highly customized data
structures. Finally, for each partition of the mem-
ory graph, we get hold of its snapshots in the inac-
tive interval, and use them in the following stage of
MemPicks algorithm discussed in the next section.

6 Shape Detection

Quiescent period represents stable state of data
structures. MemPick focuses on quiescent periods
for validating any shape hypothesis. If it repre-
sents globally valid property of data structure then
shape hypothesis should be true in every snap-
shot of graph-partition. Overlapping structures are
identified first to avoid blurring of actual shape.
More advance analysis is also performed for sup-
porting data structures like threaded trees. Each
stage is discussed in detail below.

A. Identification of Overlapping Data Structures

/... -

(a) Memory Graph after MemPick (b) Memory Graph split into two partitions containing
identified the types of object. objects of the same type. One sentinel node also found.

.__________________.__________ ___________________1_____ o
L2, R:3

L:1,R:1

(c) MemPick detected three overlapping

(d) MemPick measures if the tree is balanced. It measures

structures: a child tree, a parent tree height of subtrees recursively and concludes that it is

and a list. unbalanced.

Figure 2: A running example illustrating MemPick’s detection algorithm.

a)The overlapping structure contains the left and the
right children edges.

b)The overlapping structure contains the left child edge
and the sibling edge.

Figure 3: An example binary tree with three point-
ers: left, right and sibling.It shows two overlap-
ping data structures: one depicted on left with solid
edges and the other depicted on the right.

Minimal pointer set is searched for finding overlap-
ping data structures. This set comprise of the fol-
lowing properties

e Generating sub-graph by keeping only those
edges, corresponding to pointers that are con-
nected

e There should be no subset of minimal pointer
set, holding the first property

Overlapping data structures are referred as Over-
lays in this section. For each partition of the mem-
ory in the graph, a set P = p1, p2, p3, .., Pn, is main-
tained. Each p; corresponds to the offset of a
pointer variable representing type of node in class
or struct. All maximal subsets of that connect
the partition are also listed. There is no redun-
dant element in the maximal subset i.e. removing
any pointer from the subset, will result in a sub-
set that does not cover the whole partition. The
tree in figure 2 shows the following set of over-
lays 4,8,12,16. These structures are disjoint but
in many data structures they may have common
elements as shown in figure 3.

Overlays also help to identify non-tree shapes like
non-circular doubly-linked list. After identification
of overlays, rules in Table 1 are applied for classi-
fication of each overlay separately. Columns 2 and
3 specify incoming and outgoing edges for ordinary
nodes while columns 3 and 4 specify incoming and

outgoing edges for special nodes. Last column de-
fines the number of special nodes.

B. Data Structure Classification

Information of all overlays is combined for high-
level description of partition being analysed, fol-
lowed by a decision tree shown in figure 4. For clas-
sification of tree in figure 2c, first MemPick checks
there are no graph overlays. As there is a binary
tree and a parent tree overlay hence MemPick iden-
tifies a binary tree with a linear overlay.

C. Refinement Classifier for Special Data Struc-
tures

Complex data structures like threaded trees have
a specific shape for which the general classification
rules are not sufficient. Hence MemPick provides
additional classifier to increase the accuracy of its
classification. Threaded tree are discussed as ex-
ample in the following section.

All the child pointers that are null in a binary tree,
point to in-order predecessor or in-order successor
in a threaded tree. We may assume that the right
child of a threaded tree is used to thread to the
successor node. A single overlapping structure is
formed because of a threaded child pointer as it
keeps all nodes of the tree connected. MemPick
applies the un-threading algorithm [5] for obtaining
a binary child tree, resulting in accurate classifica-
tion.

7 Classification of Height-

Balanced Trees

For more detailed classification of height-balanced
tree, properties like size and height of different sub-
trees within a tree can be taken into account [14].
MemPick identifies height-balanced tree, AVL, B-
trees and red-black trees. AVL tree is a type of
binary tree where the difference between height of
child subtree and the node is at most one. Where as
in red-black trees ratio of height of longest branch
to the shortest branch is 2:1. All lead nodes are at
same height in a B-tree. MemPick measures height

Table 1: MemPicks rules to classify individual overlays

Type Ordinary Ordinary Nodes | Special Nodes | Special Nodes | #
Nodes
In Out In Out
List 1 1 0 1 1
1 0 1
Circular List 1 1 - - -
Binary Child Tree 1 {0,1,2} 0 {1,2} 1
Binary Parent Tree {0,1,2} 1 {1,2} 0 1
3-ary Child Tree 1 {0,...,.3} 0 {1,...,3} 1
3-ary Parent Tree {0,...,3} 1 {1,...,3} 0 1
n-ary Child Tree 1 {0,...,n} 0 {1,...,n} 1
n-ary Parent Tree {0,...,n} 1 {1,...,n} 0 1

Graph (All remaining cases)

Isit a tree?

An extra

overlapping
structure?

A graph

[Isit a graph?

Does it contain an
n-ary tree, n>=37

owt

Isit a tree?

Does it contain
two lists? (Circular
or uncircular)

&
A singly linked-list

Figure 4: MemPick’s decision tree used to perform the final classification of a partition of the memory graph.

An unclassified
data structure

of a tree starting from the root node and computing
left Hy and right hp sub-trees. Absolute height
|hr — hr| and relative height imbalance hyr /hgr are
also computed. If for all subtrees |hy — hg|l, tree
is classified as AVL tree. B-tree property of |hy —
hr| =0 is checked for non-binary trees.

8 Final Mapping

In the final stage MemPick summarizes the results
of all partitions by each unique partition classifi-
cation and their occurrence count. Categorization
of each data structure into local or global variables
can also be detected. During execution of a func-
tion, MemPick checks the pointers stored by the
function and assigns these pointers to stack frame
of the function or global memory location. Infor-
mation from multiple runs can be merged if the
type global between different application runs can
be detected. MemPick supports this analyses of in-
dividual instructions and the resulting global types
can be merged transparently. In future MemPick
can be merged with Howard [15] which is used for
extraction of low-level data structures from C bina-
ries.

9 Evaluation

For evaluation two sets of applications are used.
Fist set comprised of popular libraries for lists and
trees and the second set comprised of real-world
applications. Test programs from libraries test suit
are used for testing relevant functionality. These li-
braries are also used for evaluation of quiescent pe-
riod detection to identify gap size requirement. The
second set comprised of applications like chromium,
lighttpd, wireshark, which showed scalability of ap-
proach.

A. Popular Libraries

MemPick is tested on 16 libraries featuring a wide
range of data structures. These libraries are well
documented and provides mean to evaluate differ-
ent implementations. Built-in self-test functionality

is used for these libraries. Additional tests are also
built according to testing requirements.

MemPick is tested on 16 libraries featuring a wide
range of data structures. These libraries are well
documented and provides mean to evaluate differ-
ent implementations. Built-in self-test functionality
is used for these libraries. Additional tests are also
built according to testing requirements

Table 2 shows the summary of test performed on
selected libraries. All data structures were success-
fully categorized by MemPick with only total of two
misclassifications. For GDSL, MemPick categorizes
perfect balanced as the tree is limited to 3 nodes.
In Glib N-ary tree is comprised of parent tree, left
child and sibling pointers. A previous pointer in sib-
ling list is also included. MemPick identifies parent
pointer, child pointers correctly with an overlay also
comprised of left child and previous sibling pointer.
This overlay results in classification as graph. As
the results of MemPick are also presented to the
user, hence reverse engineer can easily interpret re-
sults. Hence MemPick deals with a variety of data
structures and efficiently classifies them based only
on their shape.

B. Applications

MemPick is also evaluated on 10 real world appli-
cations comprising of compiler, web browser, web
server, multiple networking and graphics applica-
tions. MemPick successfully detected large number
of data structures defined in third-party libraries.
Table 3 summarizes the results of MemPick for real
applications. All the results were manually checked
for confirmation of classification. Table 3 presents
two type of errors. Typing error for misclassifi-
cation by MemPick and partition errors for data
structures that are classified correctly but their par-
titions contain errors. MemPick only misclassified
3 data structures in 10 applications. Furthermore a
wide range of data structures comprising of single
linked lists to n-ary trees, were classified accurately.
MemPick misclassified three instances. First mis-
classification is linked list in chromium, reported as
parent-pointer tree. This misclassification results
because of programming decision. Nodes removed

e}

~
/L

-~

1
[.]‘ :]
. L™
I
]
= Left Child Edge
%
——-Right Child Edge ‘,‘
Null

B Right Child Thread

Binary parent tree corresponding to
the overlapping structure formed by

Right Threaded Binary Tree
the right child.

Figure 5: The left-hand side figure presents an example right threaded binary tree and the right-hand side

illustrates the corresponding overlapping binary parent tree.

Table 2: MemPick’s evaluation across 16 libraries(#Total is the number of implementation variants of the
given type available in the library, #TruePos is the number of correctly classified variants, #FalsePos is the
number of misclassified variants)

Library Type #Total | #TruePos | #FalsePos
boost:container | dlist 1 1 0
RB tree 1 1 0
clibutils slist 1 1 0
dlist 1 1 0
GDSL dlist 2 2 0
binary tree 3 2 1
RB tree 1 1 0
GLib slist 1 1 0
dlist 1 1 0
binary tree 1 1 0
AVL tree 1 1 0
n-ary tree 1 0 1
gnulib dlist 1 1 0
RB tree 2 2 0
AVL tree 2 2 0
google-btree B-tree 1 1 0
libavl binary tree 4 4 0
RB tree 4 4 0
AVL tree 4 4 0
LibDS dlist 1 1 0
AVL tree 1 1 0
linux/list.h slist 1 1 0
dlist 2 2 0
linux/rbtree.h | RB tree 1 1 0
queue.h slist 2 2 0
dlist 2 2 0
SGLIB slist 1 1 0
dlist 1 1 0
STDCXX dlist 1 1 0
RB tree 1 1 0
STL dlist 1 1 0
RB tree 1 1 0
STLport dlist 1 1 0
RB tree 1 1 0
UTlist slist 1 1 0
dlist 2 2 0

from list, resided in memory because no data was
cleared. This resulted in confusion for shape anal-
ysis. This can be resolved by use of advanced heap
tracking and garbage collection.

MemPick misclassified three instances. Fist mis-
classification is linked list in chromium, reported as
parent-pointer tree. This misclassification results
because of programming decision. Nodes removed
from list, resided in memory because no data was
cleared. This resulted in confusion for shape anal-
ysis. This can be resolved by use of advanced heap
tracking and garbage collection.

10 Limitations and Future

Work

In our current work, we have applied shape analy-
sis to the memory graph to identify and categorize
heap based data structures. Heap objects are being
handled through the use of memory allocators, so
MemPick needs to be familiarized with the custom
memory allocators of the application. We can con-
sider the approach by [15] to be implemented for
the requirements of MemPick.

For shape analysis of the memory graph in Mem-
Pick, simple but inflexible rules are applied to reg-
ulate the edge count. This mechanism can discrim-
inate relevant and irrelevant edges in the memory.
Our assessment shows the type inference engine de-
signed for MemPick can meet this requirement in
practice. To limit false positive we recommend to
combine multiple typing information sources, such
as Howard [2] or static analyses [8] [9] [13].

In addition, we focus solely on shape based cate-
gorization of data structures. MemPick currently
recognizes all the instructions relevant to the inter-
nal operations of the data structure, but it can be
extended for the functional analysis of data struc-
tures. We believe that the existing shape analysis
can be extended to rapidly recognize code associ-
ated with the known semantics of data structures.

10

11 Related Work

Recovery of data structures is relevant to the fields
of shape analysis and reverse engineering. While
shape analysis verifies properties of data structures,
reverse engineering techniques observe how a binary
uses memory. In this section, we summarize the
existing approaches and their relation to MemPick.
Low-level data structure identification: The
most common method for revealing low-level data
structures are based on static analysis techniques
like value set analysis [8], aggregate structure iden-
tification [9] and combinations thereof [13]. Some
recent approache such as Howard [2] has taken up
dynamic analysis. As they cannot learn about high-
level data structures MemPick can also be used.
High-level data structure identification: The
most relevant approaches are the ones that dynami-
cally identify high-level data structures, such as [7],
[1], DDT [4] and [6]. The authors suggest a shape
graph to explore changes in collection of objects of
the same type. MemPicks memory graph enhances
the shape graphs for data structure detection.

[1] recovers data structures during execution. Af-
ter determining the location and size of an object;
it converts the objects from raw bytes to sequences
of block types. Finally, it categorizes similar ob-
jects by clustering objects with similar sequences of
block types. In this way, [1] detects abstract data
types but the detection is inadequate for reverse
engineering.

[6] suggest to replace shape analysis by analyzing
the patterns in data structure operations. They
label instruction groups in order to merge the la-
bel information from all instruction groups to form
a final candidate classification. This approach re-
quires manually defined templates for classification
and source code access. With MemPick, the result
of the shape analysis can be used to limit the search
space for analysis of data structure operations.

[12] propose an algorithm to dynamically infer ab-
stract types. It suggests a run-time interaction
among values to point out their similar data types.
This approach assembles objects that are classified
together. MemPicks approach to type identification
is specifically customized to our requirements.

Table 3: MemPick’s gap size evaluation across 16 libraries(The percentage represents the gap size percentile
used for quiescent period selection. The columns represent the number of data structure implementations
affected, compared to the basic-line of using 1%)

Library Type 5% | 10% | 15% | 20%
boost:container | dlist 0 0 0 0
RB tree 0 0 0 1
clibutils slist 0 0 0 0
dlist 0 0 0 0
RB tree 0 0 1 1
GDSL dlist 0 0 0 0
binary tree 1 1 1 1
RB tree 0 1 1 1
GLib slist 0 0 0 0
dlist 1 1 1 1
binary tree 0 1 1 1
AVL tree 0 1 1 1
n-ary tree 0 1 1 1
gnulib dlist 0 0 1 0
RB tree 0 1 2 0
AVL tree 0 1 2 0
google-btree B-tree 0 1 1 1
libavl binary tree 2 2 2 2
RB tree 2 2 2 2
AVL tree 2 2 2 2
LibDS dlist 0 0 0 0
AVL tree 1 1 1 1
linux/list.h slist 0 0 0 0
dlist 0 0 0 0
linux/rbtree.h | RB tree 0 0 1 1
queue.h slist 0 1 2 2
dlist 2 2 2 2
SGLIB slist 0 1 1 1
dlist 0 1 1 1
STDCXX dlist 0 0 0 0
RB tree 0 0 0 1
STL dlist 0 0 0 0
RB tree 0 0 1 1
STLport dlist 0 0 0 0
RB tree 0 0 1 1
UTlist slist 0 0 1 1
dlist 0 0 0 0

11

Currently, the most advanced approach to the data
structure detection problem is DDT [4]. DDT uses
consistent information obtained using Daikon [11].
The invariant detection reduces the flexibility of the
system. The system assumes that links between
heap objects are never accessed while the contents
of data structures are never altered. Compiler opti-
mization limits application of DDT. In the absence
of inlining, DDT works well with popular libraries
but its accuracy for custom implementations of data
structures remains uncertain. MemPick does not
make any assumptions about the structure of the
code implementing the operations on data struc-
tures. Additionally, DDT ignores the problem of
the auxiliary overlays in data structures.

12 Conclusions

In this paper, we presented MemPick, to identify
complicated pointer structures in stripped C/C++
binaries. MemPick can only detect data structures
that can be distinguished by their shape but it is
resistant to compiler optimizations. The results of
evaluation of MemPick show that the accuracy of
the data structure detection was high. Due to its
high accuracy and different approach ,MemPick is
one of the best tool tool for reverse engineers.

References

[1] Cozzie A., Stratton F., Xue H., and King ST.
Digging for data structures. In In: Proceedings
of USENIX symposium on operating systems
design and implementation, OSDI0S, 2008.

Slowinska A., Stancescu T., and Bos H. A dy-
namic excavator for reverse engineering data
structures. In Proceedings of the 18th annual
network and distributed system security sym-
posium, 2011.

Istvan Haller and Asia Slowinska and Her-
bert Bos. Scalable data structure detection and
classification for C/C++ binaries. , 2015.

12

[4]

Jung C. and Clark N. DDT: design and eval-
uation of a dynamic program analysis for op-
timizing data structure usage. In Proceedings
of the 42nd annual IEEE/ACM international
symposium on microarchitecture, MICRO-42,
2009.

Wyk CJV, editor. Data structures and C pro-
grams, volume Second. Addison-Wesley Long-
man Publishing Co., Inc., Boston, 1991.

White DH and Luttgen G. Identifying dynamic
data structures by learning evolving patterns
in memory. In Proceedings of the 19th in-
ternational conference on tools and algorithms

for the construction and analysis of systems,
TACAS13., 2013.

Raman E. and August DI. Recursive data
structure profiling. In Proceedings of the 2005
workshop on memory system performance,
2005.

Balakrishnan G. and Reps T. Analyzing mem-
ory accesses in x86 binary executables. In
Proceedings of the conference on compiler con-
struction, CC04, 2004.

Ramalingam G., Field J., and Tip F. Aggre-
gate structure identification and its application
to program analysis. In Proceedings of the 26th
ACM SIGPLAN-SIGACT symposium on prin-
ciples of programming languages., 1999.

Intel. A dynamic binary instrumentation tool,
2011. http://www.pintool.org/.

Ernst MD, Perkins JH, Guo PJ, McCamant S.,
Pacheco C., Tschantz MS, and Xiao C. The
daikon system for dynamic detection of likely
invariants. Sci Comput Program, pages 35-45,
2007.

Guo PJ, Perkins JH, McCamant S, and Ernst
MD. Dynamic inference of abstract types.
In Proceedings of the 2006 international sym-

posium on software testing and analysis, IS-
STA06., 2006.

[13]

Reps T. and Balakrishnan G. Improved
memory-access analysis for x86 executables. In
Proceedings of the joint european conferences
on theory and practice of software 17th inter-
national conference on compiler construction,
CC08/ETAPS08, 2008.

Cormen TH, Stein C., Rivest RL, and Leiser-
son CE. Introduction to Algorithms. In , 2001.

Chen X., Slowinska A., and Bos H. Detect-
ing custom memory allocators in C binaries. ,

2013.

13

